This article was downloaded by: On: 24 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Macromolecular Science, Part A

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597274

Depolymerization of Natural Rubber Latex Using Phenylhydrazine-FeCl₂ System

Ha Thuc Huy^a; Nguyen Tuyet Nga^a; Le Quang Hong^a; Chu Pham Ngoc Son^a ^a Department of Chemistry, University of Ho Chi Minh City, Ho Chi Minh City, Vietnam

To cite this Article Huy, Ha Thuc , Nga, Nguyen Tuyet , Hong, Le Quang and Son, Chu Pham Ngoc(1996) 'Depolymerization of Natural Rubber Latex Using Phenylhydrazine-FeCl₂ System', Journal of Macromolecular Science, Part A, 33: 12, 1923 — 1930

To link to this Article: DOI: 10.1080/10601329608011016 URL: http://dx.doi.org/10.1080/10601329608011016

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

DEPOLYMERIZATION OF NATURAL RUBBER LATEX USING PHENYLHYDRAZINE-FeCI₂ SYSTEM

HA THUC HUY, NGUYEN TUYET NGA, LE QUANG HONG, and CHU PHAM NGOC SON

Department of Chemistry University of Ho Chi Minh City 227 Nguyen Van Cu, Fifth District Ho Chi Minh City, Vietnam

ABSTRACT

Natural rubber latex was depolymerized by a phenylhydrazineferrous chloride system. The influence of phenylhydrazine, ferrous chloride, and ferric chloride at initial pH values of 7 and 10 on degree of depolymerization was investigated. The conversion from ferrous ion to ferric ion and vice versa, the consumption of phenylhydrazine, and the formation of radicals initiating the decomposition process have been suggested.

Among the complications that can lower the solubility and the activity of natural rubber (*cis*-1,4-polyisoprene) is its high molecular weight polymer chain. Several workers have tried to depolymerize the polyisoprene chain by phenylhydrazine-oxygen systems [1-4]. S. Yamashita and coworkers have investigated the degradation of *cis*-1,4-polyisoprene in benzene by the PhNHNH₂-FeCl₂ system [5-10]. From the obtained results, they suggested that:

- The degree of degradation increases rapidly when the reaction is carried out in the presence of PhNHNH₂ and FeCl₂, but mainly depends on the amount of used PhNHNH₂.
- The reaction of PhNHNH₂ with FeCl₂ in benzene solution (under N₂ atmosphere) rapidly produced a 2:1 complex, which rapidly decomposed in the presence of oxygen to yield radicals initiating depolymerization.

1923

Copyright © 1996 by Marcel Dekker, Inc.

• The products of this decomposition contain N_2 , benzene, phenol, biphenyl, and Fe³⁺.

A mechanism of the decomposition and initiation processes has been suggested:

$$2PhNHNH_2 + FeCl_2 \rightarrow 2PhNHNH_2 - FeCl_2$$
(1)
(1)

1 +
$$O_2$$
 \rightarrow Ph* + PhOOH + HOO* + N_2 (2)
(2) (3) (4)

$$\mathbf{R} \mathbf{H} \rightarrow \mathbf{R}^* + \mathbf{P} \mathbf{h} \mathbf{H} \tag{3}$$

$$2 \longrightarrow 2 \qquad \rightarrow Ph-Ph \qquad (4)$$

$$O_2 \rightarrow PhOO^* \xrightarrow{RH} R^* + 3$$

$$Fe^{2+} \rightarrow PhO^* + Fe^{3+} + OH^-$$
(5)
(6)

$$+ re \qquad \Rightarrow rh0^{+} + re \qquad + OH \qquad (0)$$
(5)

$$4 + RH \rightarrow R^* + H_2O_2$$
(7)
$$5 + PH \rightarrow P^* + PbOH$$
(8)

$$P^* + O \rightarrow POO^* \rightarrow \xrightarrow{RH} POOH + P^* \xrightarrow{(9)}$$

$$Fe^{3+} + ROOH \rightarrow Fe^{2+} + ROO^* + H^+$$
(10)

$$Fe^{3+}$$
 + PhOOH \rightarrow Fe^{2+} + PhOO* + H⁺ (11)

$$R^* + O_2 \rightarrow ROO^* \rightarrow R'CHO + HOR''$$
(12)

where RH represents *cis*-1,4-polyisoprene (natural rubber).

The present work concerns the influence of $PhNHNH_2$, $FeCl_2$, and $FeCl_3$ on the degradation of natural rubber latex at initial pH values (pH₀) of 7 and 10.

EXPERIMENTAL

Natural rubber latex, 60%, was stabilized by lauryl sulfate and stirred until pH reached the investigated values ($pH_0 = 7 \text{ or } 10$), then PhNHNH₂ and FeCl₂ (or FeCl₃) were added at 30°C. At every reaction period, a portion of sample was isolated, coagulated in ethanol, washed several times with water, and extracted in a Soxhlet apparatus with ethanol for 24 h. The product was reprecipitated in toluene/ ethanol and dried in a vacuum oven at room temperature. The degree of degradation was studied by intrinsic viscosity (measured by Ostwald viscometer at 30°C in toluene).

RESULTS AND DISCUSSION

Influence of FeCl₂

At pH_0 7 (Table 1), the degree of degradation was affected by the concentration of $FeCl_2 < 0.045$ mmol (per 10 g of NR latex 60% and 1.2 mmol of PhNHNH₂). This would be due to the hydration of FeCl₂, which reduces its activity.

	Run							
	- 1a	1b	1c	1d	1e	1f	1g	1h
PhNHNH ₂ (mmol)	1.2	1.2	1.2	1.2	1.2	1.2	0.6	0.6
FeCl ₂ (mmol)	0.01	0.02	0.045	0.055	0.15	0.3	0.0	0.3
	[η] (dL/g)							
Time (min)								
5	0.69	0.56	0.40	0.40	0.40	0.40	2.97	0.64
30	0.61	0.54	0.39	0.40	0.40	0.40	2.94	0.62
120	0.60	0.51	0.39	0.39	0.39	0.39	2.94	0.60

TABLE 1. Degree of Depolymerization Depends on the Content of $FeCl_2$ at pH_0 7

Note. 60% natural rubber latex = 10 g; lauryl sulfate = 0.3 g; $T = 30^{\circ}$ C; speed of stirring = 400 rpm.

The degree of degradation was found independent of the amount of $\text{FeCl}_2 > 0.045$ mmol.

At higher pH_0 10 (Table 2), the degradation became slower at the beginning of the reaction due to the slow decomposition of the complex in the high pH_0 medium. This period can be accelerated by raising the amount of FeCl₂ (formation of hydroxo of ironic ion, which lowers the pH of the medium, Table 3).

	Run						
	2a	2b	2c	2d			
PhNHNH ₂ (mmol)	0.6	0.6	0.6	0.6			
FeCl ₂ (mmol)	0.3	0.6	1.2	3.0			
		[ŋ] (c	lL∕g)				
Time (min)							
5	1.24	-	0.99	0.70			
15	1.13	1.00	0.92				
30			0.83	0.56			
120	0.80	0.69	0.64	Gel			

TABLE 2. Degree of Polymerization Depends on the Content of $FeCl_2$ at pH_0 10

Note. 60% natural rubber latex = 10 g; lauryl sulfate = 0.3 g; T = 30°C; speed of stirring = 400 rpm.

		Time (min)						
Run	FeCl ₂ (mmol)	0	1	5	15	30	60	
3a	0.3	10		8.7	8.7	8.7	8.7	
3b	1.2	10	8.1	8.0	7.7	7.6	7.6	
3c	3.0	10	6.8	6.8	6.8	6.7	6.6	
3d	0.3	7	6.4	6.3			6.1	

TABLE 3. Influence of $FeCl_2$ on pH^a of the Reaction Medium with Respect to Time

Note. 60% natural rubber latex = 10 g; lauryl sulfate = 0.3 g; T = 30°C; PhNHNH₂ = 0.6 mmol.

^aMeasured by pH meter.

TABLE 4.	Influence of PhNHNH ₂ on Degradation of
Natural Rub	ber Latex at pH_0 7

	Run						
	4a	4b	4c	4d	4e		
PhNHNH, (mmol)	0.6	1.2	1.5	1.8	2.4		
FeCl ₂ (mmol)	0.3	0.3	0.3	0.3	0.3		
		[η] (dL/g	<u>;</u>)			
Time (min)							
5	0.64	0.40	0.35	0.33	0.30		
30	0.62	0.40	0.33	0.31	0.27		
120	0.60	0.39	0.31	0.29	0.27		

Note. 60% natural rubber latex = 10 g; lauryl sulfate = 0.3 g; T = 30°C; speed of stirring = 400 rpm.

Influence of PhNHNH₂

The increase in the degree of degradation with the amount of $PhNHNH_2$ was visible at both pH_0 values (Tables 4 and 5). This indicates that $PhNHNH_2$ plays the principal part in the redox system regardless of whether $FeCl_2$ or $FeCl_3$ is used.

Influence of FeCl₂ and FeCl₃

When FeCl₃ was used instead of FeCl₂ the rate of decomposition also considerably increased (but at the beginning of the reaction, the rate was slower in comparison with the use of FeCl₂). Therefore FeCl₃ plays the same role with FeCl₂ (Table 6). Thus, the initiation of depolymerization may be described as follows:

$$[2PhNHNH_2-FeCl_2] \xrightarrow{O_2} I^* + Fe^{3+} \frac{PhNHNH_2}{PhNHNH_2} I^* + Fe^{2+}$$

where $I^* = radical$.

TABLE 5.	Influence of PhNHNH ₂ on Degree of
Depolymeriz	zation of Natural Rubber Latex at pH ₀ 10

	Run						
	5a	5b	5c	5d	5e		
PhNHNH ₂ (mmol)	0.6	1.2	1.5	1.8	2.4		
FeCl ₂ (mmol)	0.3	0.3	0.3	0.3	0.3		
		[η] (dL/g	;)			
Time (min)							
5	1.24	0.53	0.48	0.40	0.41		
15	1.13	0.46			0.32		
30	-	0.44	0.39	0.33	0.29		
60	0.85	0.43		_	0.28		
120	0.80	0.41	0.35	0.32	0.28		

Note. 60% natural rubber latex = 10 g; lauryl sulfate = 0.3 g; $T = 30^{\circ}$ C; speed of stirring = 400 rpm.

TABLE 6. Comparison of Degree of Degradation of Natural Rubber Latex Using the $PhNHNH_2$ -FeCl₂ and the $PhNHNH_2$ -FeCl₃ System

	Run						
	4b	6a	5b	6b	6c		
PhNHNH ₂ (mmol)	1.2	1.2	1.2	1.2	1.2		
FeCl ₂ (mmol)	0.3	_	0.3	_	_		
FeCl ₁ (mmol)	_	0.3		0.3	0.075		
pH ₀	7	7	10	10	7		
		[[η] (dL/g	;)			
Time (min)							
5	0.40	0.46	0.53	0.90	0.46		
120	0.39	0.39	0.41	0.66	0.39		

Note. 60% natural rubber latex = 10 g; lauryl sulfate = 0.3 g; $T = 30^{\circ}$ C; speed of stirring = 400 rpm. The complex formed from $FeCl_2$ and $PhNHNH_2$ is readily decomposed under air or oxygen atmosphere to yield Fe^{3+} and radicals as well as related reactive species (I*) causing the degradation. This ion is then combined with the excess of $PhNHNH_2$ forming an active complex that is again decomposed to yield radicals and Fe^{2+} . The cycle is continued until $PhNHNH_2$ is totally consumed.

Analysis of the Products Obtained from the Reaction of PhNHNH₂ with FeCl₂ Without Polymer Molecules

Gas chromatographic analysis of the reaction mixture shows the presence of benzene, phenol, and biphenyl. The overall amount of products yielded from decomposition of the PhNHNH₂-FeCl₃ mixture is less than that obtained with PhNHNH₂-FeCl₂. In addition, the overall amount of products obtained from the decomposition of the PhNHNH₂-FeCl₂ mixture at pH₀ 7 is greater than the value at pH₀ 10. The results are shown in Table 7.

IR Spectrum Analysis

Along with the specific peaks of *cis*-1,4-polyisoprene, there are peaks at 3292 and 1700 cm⁻¹ (COOH); 1722 cm⁻¹ (aldehyde); and 1640 and 700 cm⁻¹ indicating C=N and phenylhydrazone.

¹H-NMR Spectrum Analysis

The additional peak at $\delta = 1.25$ ppm (weak) indicating ternary proton (-C-H) shows that there is crosslinking between macroradicals (at Camethylene). The strength of this peak increases when the degree of depolymerization increases; this can also be seen from the higher values of M_w/M_n (Table 8) (the higher dispersion of molecular weight):

	DENILINILI	EaCl	E ₂ C1	Ether-soluble products (mmol)				
pH ₀	(mmol)	(mmol)	(mmol)	Benzene	Phenol	Biphenyl		
7	1.2	0.6		0.064	0.045	4.34×10^{-3}		
10	1.2	0.6	_	0.042	0.044	0		
7	2.4	0.6	_	0.096	0.043	6.14×10^{-3}		
7	3.0	0.6	_	0.180	0.034	8.17×10^{-3}		
7	2.4	—	0.6	0.060	0.054	4.2×10^{-3}		

TABLE 7. Results of Gas Chromatographic Analysis of the Products Obtained by Mixing PhNHNH₂ and FeCl₂ (or FeCl₃) Without Rubber

Note. Mixing time: 10 min.

TABLE 8.Values of M_n , M_w , and M_w/M_n Were Obtained from GPC ofDegraded Natural Rubber

[ŋ] ^a	M _n	<i>M</i> _w	$M_{\rm w}/M_{ m n}$
0.72	16550	93566	5.65
0.45	10689	64300	6.01
0.40	8117	55520	6.84
0.27	2725	42223	15.49

Note. Solvent THF (debit 1 mL/min); PL gel (5 $m \times 4$): 10², 5 × 10², 10⁴, 10⁶ Å; detector FID.

^aMeasured by Ostwald viscometer, solvent: toluene, at 30°C.

Based on the obtained results, the depolymerization can be carried out satisfactorily using 0.3 mmol of FeCl₂ at pH_0 10 and 0.045 mmol at pH_0 7 (per 10 g of 60% NR latex) and >1.2 mmol of PhNHNH₂ (depending on the desired degree of degradation).

CONCLUSION

The degradation of natural rubber latex by PhNHNH₂-FeCl₂ was investigated at $pH_0 = 7$ and 10. The obtained results suggest PhNHNH₂, Fe²⁺, and Fe³⁺ have a role in the initiation process. By this system, LNR can be produced from NR latex in the appropriate conditions (at RT, short reaction time).

REFERENCES

- [1] R. Pautrat, Rev. Gen. Caout. Plast., 57 (600), 91 (1980).
- [2] R. Pautrat and J. Marteau, French patent 74.03052 (1974); Chem. Abstr. 84, 45773e.
- [3] D. V. Luyen, presented at Vietnamese-French Symposium on "Macromolecule and Composite Materials," Ho Chih Minh City, Vietnam, August 1988 (Vietnamese).
- [4] P. H. Ly, D. V. Luyen, N. B. Thanh, and K. T. Hong, J. Chem., T27(3), 14 (1989) (Vietnamese).

- [5] S. Yamashita, M. Kawabata, and T. Fujii, J. Soc. Rubber Ind. Japan, 49, 360 (1976).
- [6] S. Yamashita, M. Kawabata, and K. Nayashi, J. Soc. Rubber Ind. Japan, 49, 420 (1976).
- [7] S. Yamashita, M. Kawabata, S. Sagan, and K. Nayashi, J. Appl. Polym. Sci., 21, 2201 (1977).
- [8] S. Yamashita, S. Kato, M. Kawabata, and J. Okamoto, J. Appl. Polym. Sci., 22, 353 (1978).
- [9] S. Yamashita, K. Kasai, M. Tanaka, and K. Harada, Abstract 3N22, 34th National Meeting of the Chemical Society of Japan, Tokyo, April 1976.
- [10] M. Kawabata, S. Yamashita, and Y. Furukawa, Bull. Chem. Soc. Japan, 51(2), 625 (1978).